WEST BENGAL STATE COUNCIL OF TECHNICAL EDUCATION TEACHING AND EXAMINATION SCHEME FOR DIPLOMA COURSES COURSE NAME: DIPLOMA IN ELECTRICAL ENGINEERING (POWER SYSTEM)

COURSE CODE : EEPS

DURATION OF COURSE : 6 SEMESTER

SEMESTER: SIXTH SEMESTER

	SUBJECT	PF	ERIO	DS	EVALUATION SCHEME							
SI.	THEORY				SES	SESSIONAL EXAM			PRACTICAL (SESSIONAL)		AL KS	STIC
No.		L	Т	Р	ТА		TOTAL	ESE	(INT.)	(EXT.)	TOT. MAR	CRF
1	Power system Operation & Load Dispatch	4		3	10	20	30	70	25	25	150	4
2	Electrical Design Estimation & Costing	4		3	10	20	30	70	25	25	150	4
3	Electrical Installation, Maintenance, Testing & repairing	4			10	20	30	70			100	3
4	Industrial Management	3			10	20	30	70			100	3
5	<i>Elective - II</i> (Any One) 1) Control of Electrical Machines. 2) Industrial Automation 3) Computer Aided Power System Analysis & Operation	3		2	10	20	30	70	25	25	150	4
6	Industrial Project			4					50	50	100	2
7	Professional Practices - IV			3					50		50	2
8	General Viva Voce								100		100	2
	TOTAL	18	0	15	50	100	150	350	275	125	900	24
					50	0	4	00				

STUDENT CONTACT HOURS PER WEEK: 33 HRS THEORY AND PRACTICAL PERIODS OF 60 MINUTES EACH

ABBREVIATIONS: L - Lecture, T - Tutorial, P – Practical, TA - Teachers Assessment, CT- Class Test, ESE - End Semester Exam, INT-Internal, EXT-External

TA: Attendance & surprise quizzes = 6 marks. Assignment & group discussion = 4 marks.

Total Marks : 900

Minimum passing marks for sessional is 40%, and for theory subject 40%.

Name of the Course: **DIPLOMA IN ELECTRICAL ENGINEERING (POWER SYSTEM)** Subject : **Power System Operation & Load Dispatch**

Subject : Power System Operation & Load Dispatch				
Course Code: EEPS/S-6/PSOLD	Semester: <i>SIXTH</i>			
Duration: ONE SEMESTER	Maximum Marks: <i>150</i>			
Teaching Scheme	Examination Scheme			
Theory : 4 hrs./week	Mid Semester Exam.: 20 Marks			
Tutorial: hrs./week	Attendance, Assignment & interaction: 10 Marks			
Practical: 3 hrs./week	End Semester Exam.: 70 Marks			
Credit: 4	Practical: 50 Marks			

Aim

To develop the basic knowledge on power system Controls and Operations.

Objectives:

- 1. Understand the basics of power system operating principles and controls.
- 2. Understand how to obtain optimum performance of the existing power system.
- 3. Know various power system controls such as excitation and voltage control, automatic generation control, VAR flow and its compensation methods etc.
- 4. Understand economic operation of power system, develop the ability to analyze the load curve and make forecast of the loads based on load curve.
- 5. Know to form Y bus and solve numerical for a three bus system.

Pre-requisite

- 1. Fundamental of Power System.
- 2. Relation between different types of power.

Units	CONTENTS	HOURS	Marks
1	Concept of Complex Power Flow (Real and Reactive Power) in	10	11
	Power System.		
	 Concept and significance of bus, classification 		
	 Concept of Real power flow in Power System. 		
	 Relation between Real power and frequency of the system. 		
	 Derive relation for a simple two bus system. 		
	 Effect of change in frequency on various consumers and Utilities. 		
	1.3 Relation between Reactive power and voltage of the system.		
	✓ Effect of change in voltage		
	 Concept of reactive power compensation 		
	 Load and line compensation. 		
	 Types of Compensation (method of providing compensation 		
	and explanation and advantages).		
	Shunt compensation		
	 Series compensation 		
	 Synchronous Compensation 		
	(Simple numerical on the above topic)		
2	Load Flow Studies	14	15
	 Need of load flow analysis 		
	 Data required for load flow studies 		
	 Derivation of static load flow equation(S.L.F.E) for simple two 		
	bus system.		
	 Information obtained from load flow studies. 		
	 Formation of Y bus. 		
	 Power system equations 		
	 Bus loading and line flow equations. 		

Units	CONTENTS	HOURS	Marks
	SLFE in general form		
	✓ Numerical for 3 bus system including reference bus		
3	Power System Stability	14	15
	Definition and illustration of terms:		
	 Power system stability and instability. 		
	Stability limit		
	 Transient stability and its limit 		
	 Steady state stability and its limit. 		
	Dynamic state stability.		
	Overall stability.		
	✓ A simple two machine power system for stability		
	studies.(model, concept and complete explanation).		
	✓ Adverse effects of instability		
	Swing equation (no derivation) and the significance of power		
	angle.		
	✓ Transient stability.		
	 Factors affecting transient stability 		
	 Methods of improving transient stability. 		
	✓ Steady state stability		
	 Derivation of maximum power flow under steady state 		
	condition.		
	(Simple numerical on the above topic)	10	
4	Automatic generation and Voltage control	13	14
	 Schematic diagram of load frequency and excitation voltage vorulators of a truth a gauge part of a decaribe the function of each 		
	regulators of a turbo generator and describe the function of each		
	$\sqrt{1}$ Load frequency control (single area case)		
	Turbine speed governing system		
	\checkmark Automatic voltage control		
	Schematic diagram of alternator voltage regulator		
	scheme and its explanation.		
	✓ The automatic load frequency and voltage regulator control		
	loops of a synchronous generator and its explanation and		
	advantages.		
	 Methods of voltage control 		
	Reactive power injection.		
	 Control by transformers (Explain in detail). 		
	(Simple numerical on the above topic)		
5	Load Dispatching	13	15
	 Load forecasting 		
	✓ Need of forecasting.		
	✓ Forecasting based on load curve.		
	 Environmental and social factors in load forecasting. 		
	 Planning tools Lood chodding and its governing factors 		
	 Load shedding and its governing factors Eunctions of load dispatch control 		
	 Functions of IDC and their significance 		
	 Types of LDC and then significance. Economic and Ontimum load dispatch 		
	✓ Input output curve		
	✓ Incremental fuel rate		
	✓ Incremental efficiencv		
	✓ Economic dispatch neglecting losses.		
	✓ Optimum load dispatch including transmission losses		
	(Simple numerical on economic dispatch neglecting losses.)		

Units	CONTENTS	HOURS	Marks
	TOTAL	64	70

List of Practicals :

- 1. To collect data from any two types of industrial consumers (HT / LT/ Processing/ Manufacturing) related to change in their operating supply frequency and voltage and the impact created on real power and reactive power of their loads respectively.
- 2. Simulation of a simple two bus system model and feeding the input data for the system and then obtaining sending and receiving powers, sending end power factor and transmission efficiency using MATLAB.
- 3. Simulation of a turbine speed governing system of a turbo generator and observe and record the effective change in frequency of a system by changing the speed of the governor using MATLAB.
- 4. Simulation of a voltage regulator scheme of a synchronous generator and observe and record the effect of changing the excitation on the generated voltage of the generator using MATLAB.
- 5. Formation of a Y bus using MATLAB and feeding the values of line impedances and write the [Y bus] matrix.
- 6. To visit power plant / substation and make a report writing about the different controls used for frequency and voltage in the station.
- 7. To visit industries where the reactive power compensating equipments are installed and draw line diagram of the same and learn the working of the equipments.
- 8. To study about the methods followed for the improvement of power factor for the reactive loads of industries.
- 9. To collect magazines / journals / seminar report (published by expert) on any topic related to the subject and read and understand thoroughly and make a brief report about it.

BOOKS:

SL. No.	Author	Title	Publisher
1	I. J. Nagrath & D. P. Kothari	Modern Power System Analysis (IV th Edition)	Tata McGraw Hill
2	K. A. Gangadhar	Electric Power Systems (Analysis , Stability and Protection)	Khanna Publishers
3	William Stevenson	Elements of Power System Analysis	McGraw Hill Series
4	Olle L. Elgerd	Electrical Energy System Theory	Tata McGraw Hill
5	B. R. Gupta	Power System Analysis and Design	S. Chand and Co.
6	C. L. Wadhava	Electrical Power System	New age international publishers
7	Abhijit Chakrabarty	Power System Analysis, operation and control	PHI

EXAMINATION SCHEME (THEORITICAL)

		ONE OR TWO SENTENCE ANSWER QUESTIONS					SUBJECTIVE QUESTIONS			
GROUP	UNIT	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS	
А	1, 2,3,	15		ONE	1820 - 20	FIVE	FIVE, TAKING AT LEAST TWO	TEN	10XE - E0	
В	4,5	10	IWENTI		1X20 = 20	FOUR	FROM EACH GROUP	I EIN	1072 = 20	

EXAMINATION SCHEME (SESSIONAL)

Continuous Internal Assessment of 25 marks is to be carried out by the teachers throughout the Sixth Semester. **Distribution of marks: Performance of Job - 15, Notebook - 10.**

External Assessment of 25 marks shall be held at the end of the Sixth Semester. Distribution of marks: **On the basis of Experiment Reports - 15, Viva-voce - 10.**

Name of the Course: **DIPLOMA IN ELECTRICAL ENGINEERING (POWER SYSTEM)** Subject : **Electrical Design, Estimation & Costing**

Subject : Electrical Design, Estimation & Costing				
Course Code: EEPS/S6/EDEC	Semester: <i>SIXTH</i>			
Duration: ONE SEMESTER	Maximum Marks: 150			
Teaching Scheme	Examination Scheme			
Theory: 4 hrs./week	Mid Semester Exam.: 20 Marks			
Tutorial: hrs./week	Attendance, Assignment & interaction: 10 Marks			
Practical: 3 hrs./week	End Semester Exam.: 70 Marks			
Credit: 4	Practical: 50			

Aim:

SI. No.	
1.	Electrical Diploma holders have to work as Technicians & Supervisors for Electrical Installations
	of various companies, commercial and Industrial electrification schemes and prepares estimates
	for these schemes.
2.	Knowledge of electrical engineering drawing, IE rules, NEC, different types of electrical
	Installation their design considerations equips the students with the capability to design and
	Prepare working drawing of different Installation projects.
3.	Understanding of the methods and procedure of estimating the material is also required.

Objective:

SI. No.	Student will be able to:
1.	State IE rules, NEC related to Electrical Installation and testing
2.	Interpret the Electrical Engineering Drawing
3.	State and describe the basic terms, general rules, circuit design procedure, wiring design and
	design considerations of Residential Electrical Installations,
4.	Explain the sequence to be followed in carrying out the estimate of Residential Electrical
	Installations.
5.	Design of main dimensions of rotating machines.
6.	Design of core and winding of a 3-phase transformer up to 200KVA
7.	Understand the concept of contracts, contractors, tender and tender document and its related
	procedures.

Pre-Requisite:

SI. No.	
1.	Basic Electrical Engineering
2.	Engineering Graphics

Contents (Theory)

Unit	Contents (Theory)	Hrs./Unit	Marks
1	Standard Norms and Specifications:	04	06
	Importance of Design-Estimation-Costing of electrical equipments &		
	installations, Concept of I.E. Rules, Importance of Standards & Specifications		
	for electrical installation and equipments.		
	Indian Electricity Rules (1956):		
	Rule 28 : Voltage level definitions.		
	Rule 30: Service lines & apparatus on consumer premises.		
	Rule 31: Cut-out on consumer's premises.		
	Rule46: Periodical inspection & testing of consumer's installation.		
	Rule 47: Testing of consumer's installation.		
	Rule 54: Declared voltage of supply to consumer.		
	Rule 55: Declared frequency of supply to consumer.		
	Rule 56: Sealing of meters & cut-outs.		
	Rule 77: Clearances above ground of the lowest conductor.		
	Rule 79: Clearances between conductors & trolley wires.		

Unit	Contents (Theory)	Hrs./Unit	Marks
	Rule 87: Lines crossing or approaching each other.		
	Rule 88: Guarding.		
2	Design of Lighting circuits:	4	6
	 Illumination level required for various applications, 		
	• Factors considered for good lighting design,		
	• Determination of number of lamps & selection of lamp type,		
	• Design for placement of lamps in a room for proper & uniform		
	illumination.		
3	Service Connection	6	8
	Concept of service connection.		
	• Types of service connection & their features.		
	Methods of Installation of service connection.		
	• Estimates of underground & overhead service connections.		
4	Residential Building Electrification	10	10
	General rules guidelines for wiring of Residential Installation and		
	positioning of equipments.		
	• Principles of circuit design in lighting and power circuits.		
	• Procedures for designing the circuits and deciding the number of		
	circuits.		
	 Method of drawing single line diagram. 		
	• Selection of type of wiring and rating of wires & cables.		
	 Load calculations and selection of size of conductor. 		
	 Selection of rating of main switch, distributions board, protective 		
	switchgear ELCB and MCB and wiring accessories.		
	Earthing of Residential Installation.		
	 Sequence to be followed for preparing Estimate 		
	 Preparation of detailed estimates and costing (approx) of 		
	electrification of Residential Installation.		
5	Electrification of commercial Installation	12	12
-	Concept of commercial Installation.		
	 Differentiate between electrification of Residential and commercial 		
	Installation.		
	 Fundamental considerations for planning of an electrical Installation 		
	system for commercial building.		
	 Design considerations of electrical Installation system for commercial 		
	building.		
	• Load calculations & selection of size of service connection and nature		
	of supply.		
	• Deciding the size of cables, busbar and busbar chambers.		
	• Mounting arrangements and positioning of switchboards, distribution		
	boards main switch etc.		
	Earthing of the electrical Installation		
	 Installation of an 11 KV indoor sub-station 		
	• Selection of type wire, wiring system & layout.		
	• Sequence to be followed to prepare estimate.		
	• Preparation of detailed estimate and costing(approx.) of electrification		
	of commercial Installation.		
6	Electrification of factory unit Installation	10	10
	Concept of Industrial load.		
	Concept of Motor wiring circuit and single line diagram.		
	• Important guidelines about power wiring and Motor wiring.		
	 Design consideration of Electrical Installation in small 		
	Industry/Factory/workshop.		
	Motor current calculations.		
	• Selection and rating of wire, cable size.		

Unit	Contents (Theory)	Hrs./Unit	Marks
	• Deciding fuse rating, starter, distribution boards main switch etc.		
	• Deciding the cable route, determination of length of wire, cable,		
	conduit, earth wire, and earthing.		
	 Sequence to be followed to prepare estimate. 		
	Preparations of detailed estimate and costing of small factory		
	unit/workshop.		
7	Design of Electrical Transformer:	10	10
	• Single phase transformer up to 1 KVACore Design, Selection of		
	stamping, winding design, window area calculation. (Numerical)		
	• 3-phase transformer up to 250 KVA -Basic design principles and		
	approaches, Specification, Magnetic circuit, Output equations and		
	Output Co-efficient, Core construction and design, Window design,		
	Winding design, Size of tank, Winding temperature rise, Insulation		
	classes, Cooling methods. (Numericals)		
8	Contracts, Tenders and Execution	8	8
	Concept of contracts and Tenders		
	Contracts, types of contracts, contractors.		
	Valid Contracts, Contract documents.		
	Tender and tender notices.		
	Procedure for submission and opening tenders.		
	Comparative statements, criteria for selecting contractors, General		
	conditions in order form.		
	Principles of Execution of works		
	Administrative approval, Technical sanctions.		
	Billing of executed work.		
	TOTAL	64	70

Contents (Practical)

SI. No.	Skills to be developed
1.	Intellectual Skills: i) Analytical Skill
	ii) Identification skill
2.	Motor Skills: i) Operate various parts of computer properly,
	ii) Problem solving skill.

Suggested list of Laboratory Experiments:

SI. No	Laboratory Experiments
1.	A newly constructed workshop is required to be fitted with a 10 H.P. Squirel cage induction motor.
	1) Draw Installation plan showing location of main control board, motor control board, motor etc,
	(using CAD)
	ii) Draw single line wiring diagram, (using CAD)
	iii) Draw wiring diagram starting from energy meter upto electric motor, (using CAD)
2.	Draw Single line diagram and layout plan of 11KV indoor & outdoor Substation (using CAD)
3.	Draw Sectional Drawing of different types of cables, overhead conductors (using CAD)
4.	Draw Sectional Drawing of different types of insulators (using CAD)
5.	Draw Core construction, H.T. & L.T. winding, other accessories of 3 phase transformer (using CAD).
6.	Draw pole, yoke , field coils, commutator and its details of D.C. Machine (using CAD).
7.	Draw transmission line structure (using CAD)

Text Books:

Name of Authors	Title of the Book	Name of the Publisher
K.B. Raina	Electrical Design; Estimating and costing	New Age International (p) Limited, New
S.K.Bhattacharya		Delhi
Surjit Singh	Electrical Estimating and costing	Dhanpat Rai and company, New Delhi
N. Alagappan	Electrical Estimating and costing	Tata Me Graw Hill Publication, New Delhi
S. Ekambaram		
S.L. Uappal	Electrical wiring Estimating and costing	Khanna Publication.

B.D.Arora	Electrical wiring, Estimating and costing	R.B. Publication, New Delhi
Surjit Singh	Electrical Engineering Drawing	S.K.Kataria & Sons

EXAMINATION SCHEME (THEORITICAL)

	ONE OR TWO SENTENCE ANSWER QUESTIONS SUBJECTIVE QUESTIC				ONE OR TWO SENTENCE ANSWER QUESTIONS			QUESTIONS				
GROUP	UNIT	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS			
А	1, 2, 3,4,5	12	TWENTY ONE	ONE	ONE	ONE	1X20	FIVE	FIVE, TAKING AT LEAST TWO	TEN	10 X 5	
В	6,7,8	11					UNE	UNE	ONE	ONE	= 20	FOUR

EXAMINATION SCHEME (SESSIONAL)

- 1. Continuous Internal Assessment of 25 marks is to be carried out by the teachers throughout the Sixth Semester. Distribution of marks: Performance of Job 15, Notebook(Drawing Sheet)- 10.
- 2. External Assessment of 25 marks shall be held at the end of the Sixth Semester on the entire Sessional syllabus. One Drawing sheet from any one of the above is to be drawn. **Distribution of marks: On spot job 15, Viva-voce -10.**

Name of the Course: **DIPLOMA IN ELECTRICAL ENGINEERING (POWER SYSTEM)** Subject : **Electrical Installation , Maintenance , Testing**

Subject: Liectifical instantation, mainten	nunce, resuny
Course Code: EEPS/S6/EIMT	Semester: <i>SIXTH</i>
Duration: ONE SEMESTER	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory: 4 hrs./week	Mid Semester Exam.: 20 Marks
Tutorial: hrs./week	Attendance, Assignment & interaction: 10 Marks
Practical: hrs./week	End Semester Exam.: 70 Marks
Credit: 3	Practical: NIL

Aim:

SI. No.

- 1. This is technology level subject with application in Industry, commercial, public utility departments such as PWD, Electricity Board etc.
- 2. After studying this subject student will be able to inspect, test, install & commission electrical machines as per IS .

Objective:

SI. No.	The student will be able to:
1.	 Know safety measures & state safety precautions.
2.	 Test single phase, three phase transformer, DC & AC machine as per IS.
3.	 Identify / Locate common troubles in electrical machines & switch gear.
4.	 Plan & carry out routine & preventive maintenance.
5.	• Install LV switchgear & maintain it.
6.	 Ascertain the condition of insulation & varnishing if necessary.
7.	 Identify faults & measures to repair faults.

Pre-Requisite:

	1
SI. No.	
1.	Knowledge of electrical equipments

Contents (Theory)

Unit	Contents (Theory)	Hrs./Unit	Marks
1	Safety & Prevention of Accidents:	5	5
	1.1. Definition of terminology used in safety		
	1.2.I.E. Act & statutory regulations for safety of persons & equipments		
	working with electrical installation		
	1.3. Dos & don'ts for substation operators as listed in IS.		
	1.4. Meaning & causes of electrical accidents factors on which severity of		
	shock depends,		
	1.5. Procedure for rescuing the person who has received an electric shock,		
	methods of providing artificial respiration,		
	1.6. Precautions to be taken to avoid fire due to electrical reasons,		
	operation of fire extinguishers		
2	General Introduction:	5	5
	2.1. Objectives of testing significance of I.S.S. concept of tolerance, routine		
	tests, type tests, special tests.		
	2.2. Methods of testing a) Direct, b) Indirect, c) Regenerative.		
	2.3. Classification and need of maintenance		
	2.4. Advantages of preventive maintenance, procedure for developing		
	preventive maintenance schedule,		
	2.5. Factors affecting preventive maintenance schedule.		
	2.6. Introduction to total productive maintenance.		
3	Testing & maintenance of rotating machines	10	10
	3.1. Type tests, routine tests & special tests of 1 & 3 phase Induction		
	motors,		
	3.2. Routine, Preventive, & breakdown maintenance of 1 & 3 phase		
	Induction motors as per IS 9001:1992		

Unit	Contents (Theory)	Hrs./Unit	Marks
	3.3. Parallel operation of alternators, Maintenance schedule of alternators		
	& synchronous machines as per IS 4884-1968		
	3.4. Brake test on DC Series motor.		
4	Testing & maintenance of Transformers:	10	10
	4.1. Listing type test, routine test & special test as per I.S. 2026-1981		
	4.2. Procedure for conducting following tests:		
	Impedance voltage, load losses, Insulation resistance, Induced over		
	voltage withstand test, Impulse voltage withstand test, Temperature		
	rise test of oil & winding, Different methods of determining temp rise-		
	back to back test, open delta (delta – delta) test.		
	4.3. Preventive maintenance & routine maintenance of distribution		
	transformer as per I.S. 10028(part III): 1981		
5	Testing & maintenance of Insulation:	8	10
	5.1. Classification of insulating materials as per I.S. 8504(part III) 1994.		
	5.2. Factors affecting life of insulating materials.		
	5.3. Methods of measuring temperature of internal parts of windings/		
	machines & applying the correction factor when the machine is hot.		
	5.4. Properties of good transformer oil. List the agents which contaminates		
	the insulating oil.		
	5.5. Understand the procedure of following tests on oil as per I.S. 1692-		
	1978		
	a) acidity test b) sludge test c) crackle test d) flash point test.		
	5.6. Filtration of insulating oil		
	5.7. Protection of electrical insulation during the period of inactivity.		
	5.8. Methods of cleaning the insulation covered with loose, dry dust, sticky		
	dirt, & oily viscous films, procedure for cleaning washing & drying of		
	insulation & revarnishing.		
	5.9. Methods of internal heating & vacuum impregnation.		
6	Trouble shooting of Electrical Machines & Switch gear:	8	10
	6.1. Significance of trouble shooting of various electrical machines and		
	describes the procedure for the same.		
	6.2. Various types of faults (mechanical, electrical & magnetic) in electrical		
	machines and reason for their occurrence.		
	6.3. Use of following tools: Bearing puller, Filler gauge, dial indicator, spirit		
	level, growler.		
	6.4. Trouble shooting charts for Single & 3-phase induction motor, Single &		
	3- phase transformer.		
	6.5. List the common troubles in HV and LV switchgear, contactors &		
	batteries.		
7	Installation:	12	10
	7.1. Inspection procedure of Machine Installation.		
	7.2. Factors involved in designing the machine foundation,		
	7.3. Requirement of different dimension of foundation for static & rotating		
	machines procedure for levelling & alignment of two shafts of directly		
	& indirectly coupled drives, effects of misalignment.		
	7.4. Installation of rotating machines as per 1.5. 900-1992.		
	7.5. Use of various devices & tools in loading & unioading, lifting, carrying		
	neavy equipment.		
	7.0. Method of drying out of Machines.		
	7.1. Glassification of Transmission Towar (From foundation to complete		
	erection)		
Q	Earthing.	6	10
0	8.1 Introduction & importance	U	10
	8.2 Sten notential & Touch notential		
	8 3 Factors affecting Farth Resistance		
	8.4 Methods of earthing		
	o. i. includus of cal tilling	l .	

Unit	Contents (Theory)	Hrs./Unit	Marks
	8.5. Substation and Transmission Tower earthing		
	8.6. Transformer Neutral Earthing.		
	TOTAL	64	70
Tout	Doolar		

I EXT BOOKS:		
Name of Authors	Title of the Book	Name of the Publisher
Tarlok Sibgh	Installation, Commissioning & Maintenance of Electrical Equipment	S.K.Kataria & Sons
B.V.S.Rao	Operatin & Maintenance of Electrical Machines Vol I & II	Media Promoters & Publisher Ltd. Mumbai

EXAMINATION SCHEME (THEORITICAL)

		ONE OR TWO SENTENCE ANSWER QUESTIONS			SUBJECTIVE QUESTIONS							
GROUP	UNIT	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS			
А	1, 2, 3,4,5	12	TWENTY	NTY ONE	'Y ONE	1X20	FIVE	FIVE, TAKING AT LEAST TWO	TEN	10 X 5		
В	6,7,8	11	IWENTI			ONE	ONE	UNE	ENTI ONE	= 20	FOUR	FROM EACH GROUP

Note: Paper-setter should take into account the marks which have been allotted in each unit and set the paper accordingly so that all units get the importance as allotted.

Name of the Course: <i>DIPLOMA IN ELECTRICAL ENGINEERING (POWER SYSTEM)</i> Subject : <i>Industrial Management</i>					
Course Code: <i>EEPS/S6/IM</i>	Semester: <i>SIXTH</i>				
Duration: ONE SEMESTER	Maximum Marks: 100				
Teaching Scheme	Examination Scheme				
Theory: 3 hrs./week	Mid Semester Exam.: 20 Marks				
Tutorial: hrs./week	Attendance, Assignment & interaction: 10 Marks				
Practical: hrs./week	End Semester Exam.: 70 Marks				
Credit: 3	Practical: NIL				

<u>Aim:</u>

SI. No.1.To study the techniques for improvement in productivity of the people and equipment, to plan
the production schedule accordingly organize material supply for the manufacturing activities.
To minimize the direct and indirect cost by optimizing the use of resources available. To learn
accounting process, inventory control and process planning. Modern manufacturing system

Objective:

SI. No.	The student will able to
1.	Familiarize environment in the world of work
2.	Explain the importance of management process in Business.
3.	Identify various components of management
4.	Describe Role & Responsibilities of a Technician in an Organizational Structure.
5.	Apply various rules and regulations concerned with Business & Social Responsibilities
	of the Technician

employ techniques such as JIT, TPM , FMS, 5'S', kaizen which should be known to the technician.

Pre-Requisite: NIL

Contents (Theory)

Unit	Contents (Theory)	Hrs./Unit
	GROUP A	
1	Overview Of Business	04
	1.1. Types of Business	
	• Service	
	Manufacturing	
	• T rade	
	1.2. Industrial sectors	
	Introduction to	
	Engineering industry	
	Process industry	
	Textile industry	
	Chemical industry	
	Agro industry	
	1.3 Globalization	
	Introduction	
	Advantages & disadvantages w.r.t. India	
	1.4 Intellectual Property Rights (I.P.R.)	
2	Management Process	05
	2.1 What is Management?	
	Evolution	
	Various definitions	
	Concept of management	
	Levels of management	
	Administration & management	
	Scientific management by F.W.Taylor	

Unit	Contents (Theory)	Hrs./Unit
	2.2 Principles of Management (14 principles of Henry Fayol)	
	2.3 Functions of Management Planning	
	Organizing	
	• Directing	
	Controlling	
	2.4 Social responsibility and Environmental dimension of management	
	GROUP - B	
3	Organizational Management	6
	3.1 Organization :-	
	Definition	
	Steps in organization	
	3.2 Types of organization	
	1. Line	
	2. Line & staff	
	3. Functional	
	4. Project	
	3.3 Departmentation	
	Centralized & Decentralized	
	Authority & Responsibility	
	Span of Control	
	3 4 Forms of ownership	
	Pronriotarshin	
	Partnership	
	• Loint stock	
	• Joint stock	
	• Co-operative Society	
	• Govt. Sector	10
4	Human Resource Management	10
	4.1 Personnel Management	
	Introduction	
	• Definition	
	Objectives	
	• Functions	
	4.2 Staffing	
	Introduction to HR Planning	
	Recruitment Procedure	
	4.3 Personnel– Training & Development	
	Types of training	
	Induction	
	Skill Enhancement	
	4.4 Grievance handling	
	4.5 Leadership & Motivation	
	Maslow's Theory of Motivation	
	4.6 Safety Management	
	Causes of accident	
	Safety precautions	
	4 7 Introduction to –	
	Eactory Act	
	• FSI Act	
	ESTACL Mandred and Communications Act	
	workmen Compensation Act	
5	GROUP - C Financial Management	Q
5	5 1 Financial Management- Objectives & Functions	
	5.2. Canital Ganeration & Management	
	• Types of Capitals	
	· Types of Capitals	

Unit	Contents (Theory)	Hrs./Unit
	Sources of raising Capital	
	5.3. Budgets and accounts	
	Types of Budgets	
	 Production Budget (including Variance Report) 	
	Labour Budget	
	Different financial ratios,	
	• Introduction to Profit & Loss Account (only concepts); Balance Sheet	
	5.4 Introduction to-	
	Excise Tax.	
	Service Tax	
	Income Tax	
	• VAT	
	Custom Duty	
6	Materials Management	9
	6.1. Inventory Management (No Numerical)	
	Meaning & Objectives	
	6.2 ABC Analysis	
	6.3 Economic Order Quantity(EOQ)	
	6.4 Stores function, Stores system, BIN card, Materials issue request(MIR), Pricing	
	of materials	
	Introduction & Graphical Representation	
	6.4 Purchase Procedure	
	Objects of Purchasing	
	Functions of Purchase Dept.	
	Steps in Purchasing	
	6.5 Modern Techniques of Material Management	
	Introductory treatment to JIT / SAP / ERP	
7	Safety Engineering	5
	7.1 Accidents-causes of accidents, Welfare measures.	
	7.2 Need for safety	
	7.3 Organization for safety	
	7.4 Safety committee	
	7.5 Safety programmes	
	/.6 Safety measures	

Text Books:

Name of Authors	Title of the Book	Name of the Publisher
Dr. O.P. Khanna	Industrial Engg & Management	Dhanpat Rai & sons New Delhi
V.Arun Viswanath, Anoop.	Industrial Engineering and Management	SCITECh Publication(s) Pvt.
S. Nair, S.L.Sabu		Ltd
A. Bhat & A. Kumar	Management Principles, Processes & Practices	Oxford University Press
Dr. S.C. Saksena	Business Administration & Management	Sahitya Bhavan Agra
W.H. Newman, E. Kirby	The process of Management	Prentice- Hall
Warren, Andrew R. McGill		
Rustom S. Davar	Industrial Management	Khanna Publication
Banga & Sharma	Industrial Organisation & Management	Khanna Publication
Jhamb & Bokil	Industrial Management	Everest Publication , Pune

Suggested List of Assignments/Tutorial :-

- 1. Preparation of financial budget of any organization.
- 2. Preparation of chart for fire safety.
- 3. Preparation of chart for personal, Tools & Equipments and products safety.
- 4. Preparation of chart to avoid accident.
- 5. Preparation of chart to show the different financial ratios.
- 6. Preparation of chart to show the different types of organization.

EXAMINATION SCHEME (THEORITICAL)

		ONE OR TWO SENTENCE ANSWER QUESTIONS			SUBJECTIVE QUESTIONS				
GROUP	UNIT	TO BE SET	TO BE ANSWERED	MARKS PER QUESTIO N	TOTAL MARKS	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS
А	1, 2	7	TWENTY	ONE	1820 - 20	THREE	FIVE, TAKING AT LEAST ONE	TEN	10XE - E0
В	3, 4	7		UNE	1720 = 20	THREE	FROM EACH GROUP	I EIN	1072 = 20
С	5, 6, 7	11				FOUR			

Name of the Course: DIPLOMA IN ELECTRICAL ENGI	NEERING (POWER SYSTEM)
Name of the subject: Control of Electrical M	lachines (Elective)
Subject Code : EEPS/S6/CEM(EL)	Semester: Sixth
Duration : One Semester	Maximum Marks : 150
Teaching scheme :	Examination scheme :
Theory: 3 Hrs./ Week	Mid Semester Exam: 20 Marks
Practical: 2 Hrs./Week	Assignment & Quiz: 10 Marks
	End Semester Exam: 70 Marks
	Practical: 50 Marks
Credit: 04	

Aim:	
SI. No.	
1.	This subject is the combination of Electrical machine and Control system. Most of the motor control circuits are based on these systems.
2.	Understanding of the subject will provide skill to the students of different motor control systems and their applications in industry.
Objectiv	ve:
SI. No.	Student will be able to:
1.	Interpret the basics of the motor control systems.
2.	Demonstrate the solid state control of motor.
3.	Describe the implementation of PLC in control systems.
Pre-Rec	quisite:
1.	Knowledge of Electrical machine.
2.	Knowledge of Control system.

Contents (Theory):	Hrs./ Unit	Marks
Unit: 1 1. Control Systems :	08	12
1.1 Concept of Automatic control system.		
1.2 Illustration of Open loop and closed loop control system.		
1.3 Need for feed back system.		
1.4 Basic elements of a servo mechanism.		
1.5 Examples of Automatic control system.		
1.6 Introduction to solid state control.		
1.7 Advantages of solid state control of machines.		
Unit: 2 2. Magnetic Control Systems:	10	14
2.1 Operation & Applications of Contactor control circuit		
components -		
(i) Switches - Push button type, Selector type, Limit switch.		
Pressure, Float type, Proximity, Thermostat (Temperature)		
(ii) Fuses - Kit-kat type, Cartridge type. HRC type		
(iii) MCCB, MCB.		
(iv) Electromagnetic Contactor.		
(v) Overload relays - Voltage operated, Current operated, Thermal overload		
relay, Magnetic overload relay,		
(vi) Time delay relays (OFF delay, ON delay).		
(vii) Timer - Pnumatic type, Electronic type.		
(viii)Relays -Frequency response relay, Latching relay, Phase failure relay		
(single phase preventer), Solid state relay.		
(ix) Solenoid valve.		
2.2 Principles of design of motor control circuits and power circuits.		

	Contents (Theory):	Hrs./ Unit	Marks
Unit: 3	3. MAGNETIC CONTROL OF DC MOTOR:	10	14
	3.1 Operation of Control circuit & Power circuits of -	-	
	(i) Jogging operation of DC motor in one and two directions.		
	(ii) Starters of DC motor - Current limit accleration starter, Series		
	relay & Counter emf starter, Definite time accleration starter.		
	(iii) Braking of DC motor - Dynamic braking , Reversing &		
	plugging.		
	(iv) Protection of DC motor - Field failure protection circuit, Field		
	accleration protection circuit, Field deceleration circuit.		
	3.2 Solid State Control of DC Motor:		
	(i) Speed control of DC motor using chopper circuit.		
	(ii) Speed control of DC shunt motor using thyristor- Half-wave		
	drives & Full-wave drives.		
Unit: 4	4. MAGNETIC CONTROL OF AC MOTOR:	10	14
	4.1 Operation of Control circuit & Power circuits of -		
	(i) Reversing the direction of rotation of induction motor with		
	Interlocking systems		
	(ii)Simple ON-OFF motor control circuit,		
	(iii) Automatic Sequencial control of motor.		
	(iv)DOL starter,		
	(v) Automatic Auto-transformer starter,		
	(vi) Automatic Star-Delta starter.		
	(vii) Starter for multispeed operation of motor.		
	(viii) Plugging & Dynamic braking of AC motor.		
	(ix)Protection of AC motor - Overload, Short circuit and Over		
	temperature protection of high rating motors.		
	4.2 Solid State Control of AC Motor:		
	(1) Speed control of three phase induction motor using variable		
	voltage frequency control,		
	(1) Speed control of slip-ring induction motor using variable rotor		
	circuit resistance.		
	(III) Speed control of single phase induction motor using		
	(iv) Speed control of symphronous motor		
	(i) Speed control of universal motor.		
Unit: 5	5 Use of Programmable Logic Control (PLC):	10	16
Unit. 5	5. Use of Flogrammable Logic Control (FLC). 5.1 Introduction & Advantages of PLC	10	10
	5.1 Function of each part of PLC		
	5.2 Function of Cach part of FLC.		
	5.4 Concent of Ladder diagram in PLC programming		
	5.5 Ladder logic diagram for -		
	(i) DOL starter of Induction motor		
	(ii) Automatic Star-Delta starter of Induction motor		
	(iii) Sequential operation of three motors with a time gap.		
	(iv) Fluid filling operation		
	5.6 Use of PLC in closed loop control. Proportional control. Integral control.		
	Derivative control & PID control with illustration.		
	5.7 DC motor speed control using PLC programming.		
	TOTAL	48	70

Practical: Skills to be developed:

Intellectual Skills: 1. To select appropriate component and equipment. 2. Apply different designing skills.

Motor Skills:

1. Ability to draw the control & power circuit diagrams.

2. Ability to interpret the circuits and waveforms.

List of Practical: (At least Eight experiments are to be performed)

1. To study control components - Electromagnetic contactor, Thermal overload relay, Timer (OFF delay, On delay), Push button Switches, Solenoid valve, MCB.

2. To make & test the control and power circuit for Jogging operation, forward & reverse rotation of Sq.cage induction motor using contactor control.

3. To make & test the control and power circuit for fully-automatic star-delta starter operation of cage induction motor using contactor control.

4. To make & test the control circuit for dynamic braking operation of induction motor using contactor control.

5. To make & test the working of single phase preventer using contactor control.

6. To control speed of DC shunt motor using SCR drive.

7. To make & test the control circuit operation of DOL starter of induction motor using PLC.

8. To make & test the control circuit operation of automatic star-delta starter of induction motor using PLC.

9. To study the Speed control of DC shunt motor with PID control using PLC.

10. To make & test the control circuit operation of three sequential motor operations using PLC.

List of Text Books:

	10110 200110.		
SI. No.	Name of Author	Title of the Books	Name of Publisher
1.	S.K.Bhattacharya	Industrial Electronics and Control	T.M.H.
2.	Dr. S.K.Sen	Electrical Machine	Khanna Publisher
3.	V. Subrahmanyam	Electric Drives - concepts & applications	T.M.Hill
4	Petruzella	Programmable Logic Controller	T.M.Hill

EXAMINATION SCHEME (THEORITICAL)

GROUP	UNIT	ONE OR TWO SENTENCE ANSWER QUESTIONS			SUBJECTIVE QUESTIONS				
		TO BE SET	TO BE ANSWERE	MARKS PER	TOTAL MARK	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS
			D	QUESTION	S				
А	1, 2,3	12	TWENTY	ONE	1X20	FIVE	FIVE, TAKING AT LEAST TWO	TEN	10X5
В	4,5	11			= 20	FOUR	FROM EACH GROUP		= 50

Note: Paper-setter should take into account the marks which have been allotted in each unit and set the paper accordingly so that all units get the importance as allotted.

EXAMINATION SCHEME (SESSIONAL)

- 1. Continuous **Internal Assessment** of 25 marks is to be carried out by the teachers throughout the Sixth Semester. Distribution of marks: Performance of Job 15. Laboratoiy Notebook 10.
- 2. **External Assessment** of 25 marks shall be held at the end of the Sixth Semester on the entire Sessional syllabus. One Experiment per student from any one of the above is to be performed. Experiment is to be set by lottery system. Distribution of marks: On spot job 15, Viva-voce 10.

Name of the Course: DIPLOMA IN ELECTRICAL ENGINEERING (POWER SYSTEM)							
Subject : INDUSTRIAL AUTOMATION (ELECTIVE)							
Course Code: EEPS/S6/IA(EL) Semester: SIXTH							
Duration: ONE SEMESTER	Maximum Marks: 150						
Teaching Scheme	Examination Scheme						
Theory : 3 hrs./week	Mid Semester Exam.: 20 Marks						
Tutorial: hrs./week	Attendance, Assignment & interaction: 10 Marks						
Practical: 2 hrs./week End Semester Exam.: 70 Marks							
Credit: 4	Practical: 50 Marks						

Aim:

The contents aim to develop the knowledge of the student in the field of automation in industries. This will be comprising knowledge of PLC, DCS and SCADA Systems. They will also get familiar with different industrial standard protocols.

Objective:

Sl. No.	The students will be able to:
1.	Know what automation is and what are the tools used in achieving automation.
2.	Program PLC.
3.	Know about the function of DCS, SCADA.
4.	Get acquainted with different standard protocols used in industries.

Pre-requisite:

Sl. No.	
1.	Idea on basic control system, basic electronics, digital electronics.
2.	Basic Concept in programming

Theory:

Unit	Contents	Hours	Marks
01	Control Systems and Automation Strategy: Evolution of instrumentation and	6	8
	control. Role of automation in industries, Benefits of automation. Introduction to		
	automation tools PLC. DCS. SCADA, Hybrid DCS/PLC, Automation strategy		
	evolution. Control system audit, performance criteria, Safety Systems.		
02	Programmable logic controllers (PLC): Introduction, architecture, definition of	10	16
	discrete state process control, PLC Vs PC. PLC Vs DCS, relay diagram, ladder		
	diagram, ladder diagram examples, relay sequencers, timers/counters, PLC		
	design. Study of at least one industrial PLC.		
03	Advance Applications of PLC and SCADA: PLC programming methods as per IEC	8	11
	61131, PLC applications for batch process using SFC, Analog Control using PLC.		
	PLC interface to SCADA/DCS using communication links (RS232. RS485) and		
	protocols (Modbus ASCII RTU)		
04	Instrumentation Standard Protocols: HART Protocol introduction, frame	8	11
	structure, programming, implementation examples. Benefits. Advantages and		
	Limitations. Foundation Fieldbus HI introduction, structure, programming, FDS		
	configuration, implementation examples. Benefits, Advantages and Limitations,		
	Comparison with other fieldbus standards including Device net. Profibus.		
05	Controlnet. CAN. Industrial Ethernet etc.	10	1(
05	Distributed Control Systems: DCS Introduction, Iunctions, advantages and	10	10
	DCS Architecture of different makes specifications configuration and		
	programming functions including database management reporting alarm		
	programming, functions including database management, reporting, alarm		
	functions viz Advance Process Control Batch application Historical Data		
	Management OPC support Security and Access Control etc		
06	Automation for following industries - Power Water and Waste Water Treatment	6	8
00	Food and Beverages Cement Pharmaceuticals Automobile and Building	0	0
	Automation.		
	TOTAL :	48	70

Conten	ontents (Practical)					
SI. No.	Skills to be developed					
1.	Intellectual Skills: i) Analytical Skill					
	ii) Identification skill					
2.	Motor Skills: i) Operate different software used in industries used in automation, ii) Problem solving skill.					
	iii) Proper Handling of PLC/DCS/SCADA system.					

PRACTICAL:

01	Study of Various types of PLCs
02	Case study of Industrial PLC/PLC trainer.
03	Ladder diagram implementation of basic logic gates.
04	Ladder diagram implementation using timers.
05	Ladder diagram implementation using counters.
06	Ladder diagram implementation using relay sequencer.
07	Ladder diagram implementation for any one automation system.
80	Experiment on SCADA System.
09	Case study of Industrial DCS/DCS trainer.
10	Experiment on DCS Trainer for batch application, database management, and communication.
11	Interface of DCS with SCADA/PLC, using protocol/field bus.

BOOKS

Sl. No.	Title	Author	Publication
01	Distributed Computer Control for Industrial	Poppovik Bhatkar	Dekkar Publications
	Automation		
02	Programmable Logic Controllers: Principles	Webb and Reis	PHI
	and Applications		
03	Computer Aided Process Control	S.K. Singh	PHI
04	Introduction to Programmable Logic	Garry Dunning	Thomson Learning
	Controllers		
05	The Management of Control System:	N.E.Battikha	ISA
	Justification and Technical Auditing		
06	Computer Based Process Control	Krishna Kant	РНІ

EXAMINATION SCHEME (THEORITICAL)

		ONE OR TWO SENTENCE ANSWER QUESTIONS			SUBJECTIVE QUESTIONS				
GROUP	UNIT	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS
А	1, 2, 3	12	TMENTY	ONE	1 V 20 - 20	FOUR	FIVE, TAKING AT	10 (TEN)	10 X E - E0
В	4, 5, 6	11		UNE	1 A 20 = 20	FIVE	EACH GROUP	10 (IEN)	10 X 3 = 50

EXAMINATION SCHEME (SESSIONAL)

1.	Continuous Internal Assessment of 25 marks is to be carried out by the teachers throughout the
	Fifth Semester. Distribution of marks: Performance of Job - 15, Notebook - 10.
2.	External Assessment of 25 marks shall be held at the end of the Fifth Semester on the entire syllabus.
	One Experiment per student from any one of the above is to be performed. Experiment is to be set by
	lottery system. Distribution of marks: On spot job - 15, Viva-voce - 10.

Name of the Course: DIPLOMA IN ELECTRICAL ENGINEERING (POWER SYSTEM) Subject : Computer Aided Power System Analysis & Operation(Elective)

Subject: Computer Aldeur Ower System Andrysis & Operation [Elective]			
Course Code: EEPS/S6/CAPSAO(EL)	Semester: <i>SIXTH</i>		
Duration: ONE SEMESTER	Maximum Marks: 150		
Teaching Scheme	Examination Scheme		
Theory: 3 hrs./week	Mid Semester Exam.: 20 Marks		
Tutorial: hrs./week	Attendance, Assignment & interaction: 10 Marks		
Practical: 2 hrs./week	End Semester Exam.: 70 Marks		
Credit: 4	Practical: 50 Marks		

Aim

Modern power systems use computer as a tool to perform real time analysis and operation. The knowledge of use of computer in power industry is obvious. The study of this subject would certainly build up confidence in the students who would like to join the power industry.

Objectives

SI. No.	Student will be able to:	
1	Analyze power flow using computer.	
2	Perform short circuit studies using computer.	
3	Perform transient stability studies using computer.	

Pre-requisite

SI. No.	
1	Fundamental knowledge of Power System
2	Knowledge of basic computer operations
3	Knowledge in C-programming/Matlab.

Contents (Theory)

Unit	Contents (Theory)	Hours	Marks
1	 Introduction Modern power system operation and control different types of power system analysis. Single line diagram of power system modeling of synchronous machines, transformer loads, transmission line etc, per unit representation of power system. 	6	8
2	 Power Flow Analysis Formation of Z-bus &Y-bus matrices in the presence of mutually coupled elements power flow problem. Basic power flow equations and Basic power flow solution by Gauss- Siedel method. Basic power flow solution by Newton-Raphson method and fast decoupled methods. Sparse matrix techniques. Control of Power Flow and A.CD.C. load flow technique. 	12	18
3	 Short Circuit Analysis Symmetrical Fault analysis & introduction to symmetrical components: positive sequence, negative sequence and zero sequence impedances of electrical appliances and power system inter connection of sequence. Sequence networks of power system components. LG, LL, LLG fault analysis using sequence networks. Unbalance fault analysis using of ZBUS matrix. Fault calculations for three- phase and LG faults. Fault calculations for LL and LLG faults. Open conductor fault analysis. 	15	22

Unit	Contents (Theory)	Hours	Marks
4	Transient Stability Analysis	15	22
	Classification of power system stability.		
	The swing equation.		
	• Simplified synchronous machine model and system equivalents.		
	• The equal area criterion, numerical integration of swing equation, multi-		
	machine stability, methods for enhancement & transient stability.		
	Fundamentals of voltage stability.		
	TOTAL	48	70

LIST OF PRACTICALS

- 1. Formation of Z-bus matrix from the data of 3-bus system and 5-bus system using Matlab or Clanguage.
- 2. Formation of Y-bus matrix from the data of 3-bus system and 5-bus system using Matlab or C-language.
- 3. Matlab or C-program to solve basic load flow equations by numerical iterative technique using Gauss-Siedel method.
- 4. Matlab or C-program to solve basic load flow equations by numerical iterative technique using Newton-raphson method.
- 5. Matlab or C-program to solve basic load flow equations by numerical iterative technique using fast decoupled methods.
- 6. Matlab or C-program to solve Swing equation using Runga-Kutta method.
- 7. Determination of positive, negative and zero sequence components of a three phase unbalance voltage or current using Matlab or C-program.

Books

1. Computer Modelling of Electrical Power Systems – J. Arrillaga and N. R. Watson (Second Edition) John Wiley & Sons.

- 2. Computational Methods for Electric Power Systems Mariesa Crow, CRC Press.
- 3. Power System Analysis and design J. D Glover & M. S. Sarma (3rd Ed.) Books/Cole.
- 4. Power System Analysis J. J. Grainger & W. D Stevenson, Jr. (Int. Ed.) McGraw Hill.
- 5. Modern Power System Analysis D. P. Kothari & I. J. Nagrath (3rd Ed.) Tata McGraw Hill.
- 6. Power System Stability and Control P. Kundur, Tata McGraw Hill.

EXAMINATION SCHEME (THEORITICAL)

	PUNIT	ONE OR TWO SENTENCE ANSWER QUESTIONS				SUBJECTIVE QUESTIONS						
GROUP		TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS	TO BE SET	TO BE ANSWERED	MARKS PER QUESTION	TOTAL MARKS			
А	1, 2	11						4.110.0	FOUR	FIVE, TAKING AT		
В	3, 4	12	TWENTY	ONE	= 20	FIVE	FROM EACH GROUP	TEN	10×5 = 50			

EXAMINATION SCHEME (SESSIONAL)

1.	Continuous Internal Assessment of 25 marks is to be carried out by the teachers throughout the Sixth
	Semester. Distribution of marks: Performance of Job - 15, Notebook - 10.
2.	External Assessment of 25 marks shall be held at the end of the Sixth Semester on the entire syllabus.
	One Experiment per student from any one of the above is to be performed. Experiment is to be set by
	lottery system. Distribution of marks: On spot job - 15, Viva-voce - 10.

Name of the Course: **DIPLOMA IN ELECTRICAL ENGINEERING (POWER SYSTEM)** Subject : **Industrial Project**

Subject : Industrial Project	
Course Code: EEPS/S6/IP	Semester: <i>SIXTH</i>
Duration: ONE SEMESTER	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory : hrs./week	Mid Semester Exam.: NIL
Tutorial: hrs./week	Attendance, Assignment & interaction: NIL
Practical: 4 hrs./week	End Semester Exam.: NIL
Credit: 2	Practical: 100 Marks

Aim:

SI. No.	
1.	This subject is intended to teach students to understand facts, concepts and techniques of
	electrical equipments, its repairs, fault finding and testing, estimation of cost and procurement of
	material, fabrication and manufacturing of various items used in electrical field
0	

2. This will help the students to acquire skills and attitudes so as to discharge the function of supervisor in industry and can start his own small-scale enterprise

Objective:

SI. No.	
1.	• Develop leadership qualities.
2.	 Analyze the different types of Case studies.
3.	Develop Innovative ideas.
4.	 Develop basic technical Skills by hands on experience.
5.	• Write project report.
6.	 Develop skills to use latest technology in Electrical field.

Pre-Requisite:

SI. No.	
1.	Knowledge of subjects up to 5 th Semester of Electrical Engineering
2.	

Contents

This subject is the continuation of the part of Industrial Project of subject **"INDUSTRIAL PROJECT AND ENTREPRENEURSHIP DEVELOPMENT**" studied in 5th Semester. Following activities related to project

are required to be dealt with, during this semester.

- 1) Each project batch should carry out the actual Project works which have been approved in Fifth Semester.
- 2) At the end of this semester each project batch should prepare the detailed project report & submit the same to respective guide.

The lists of projects are same as in 5th semester which are as follows:

Group	Projects
Ι	1. Design of Illumination Scheme (Up to 20 KW) for Hospital / Shopping Mall / Cinema
	Theatre / Commercial Complex / Educational Institute / Industrial Complex.
	2. Design of Rural Electrification Scheme for small Village, Colony.
	3. Energy Conservation and Audit.
	4. Substation Model (Scaled)
	5. Wind Turbine Model (Scaled)
	6. Pole Mounted Substation Model (Scaled)
	7. Conduct load survey to ascertain the total load requirements of a locality/olytechnic.
	8. Any other items as may be assigned by the teacher concerned.
II	(1) Rewinding of Three Phase/Single Phase Induction Motor.
	(2) Rewinding of Single Phase Transformer.
	(3) Fabrication of Inverter up to 1000 VA.
	(4) Fabrication of Battery Charger.

Group	Projects
	(5) Fabrication of Small Wind Energy System for Battery Charging.
	(6) Fabrication of Solar Panel System for Battery Charging.
	(7) Fabrication of Water level controller.
	(8) Fabrication of DC motor speed control circuit by SCRs.
	(9) Microprocessor/ Micro controller Based Projects.
	(10) Simulation Projects using Matlab.
	(11) Any other items as may be assigned by the teacher concerned.

Continuous Internal Assessment of 50 marks is to be carried out by the teachers throughout the semesters. **Distribution of marks: Project Work – 25, Project Report Presentation – 15, Viva-voce – 10.**

External assessment of 50 marks shall be held at the end of the Sixth Semester on the entire Project Work. The external examiner is to be from Industry / Engineering College / University / Government Organization. **Distribution of marks:** Project Work - 25, Project Report Presentation – 15, Viva-voce – 10.

Name of the Course: **DIPLOMA IN ELECTRICAL ENGINEERING (POWER SYSTEM)** Subject : **Professional Practices IV**

Subject : Professional Practices IV		
Course Code: EEPS/S6/PF IV	Semester: <i>SIXTH</i>	
Duration: ONE SEMESTER	Maximum Marks: 50	
Teaching Scheme	Examination Scheme	
Theory : hrs./week	Mid Semester Exam.: NIL	
Tutorial: hrs./week	Attendance, Assignment & interaction: NIL	
Practical: 3 hrs./week	End Semester Exam.: NIL	
Credit: 2	Practical: 50 Marks	

Aim:

SI. No.	
1.	To acquire information from different sources
2.	To present a given topic in a seminar, discuss in a group discussion
3	To prepare report on industrial visit, expert lecture.

Objective:

SI. No.	The student will be able to
1.	Acquire information from different sources
2.	Prepare notes for given topic
3.	Present given topic in a seminar
4	Interact with peers to share thoughts
5	Prepare a report on industrial visit, expert lecture
5	repare a report on maustral visit, expert lecture

Pre-Requisite:

SI. No.	
1.	Knowledge of studying 5 semesters in Diploma Engineering

Activities

Sr. No.		Activities	Hours
1.	Industr	ial / Field Visit:	12
	Structured Field visits be arranged and report of the same should be submitted		
	by the individual student, to form part of the term work.		
	Visits to	anv ONE from the list below (should not have completed in earlier	
	semeste	r):	
	i.	Multistoried building for power distribution	
	ii.	Any industry with process control and automation	
	iii.	District Industries Centre (to know administrative set up, activities,	
		various schemes etc)	
	iv.	Railway / metro railway signaling system	
	v.	Motor rewinding in a motor rewinding shop	
	vi.	Visit warehouse / Rail yard / port and observe Material Handling	
		Management & documentation.	
	vii.	A thermal / Hydel power generating station	
	viii.	A Wind mill and / or Hybrid power station of wind and solar	
	ix.	An electrical substation	
	Х.	A switchgear manufacturing / repair industry	
	xi.	Protection system in a large industry.	
	xii.	Visit to maintenance dept of a large industry.	
	xiii.	A large industry to study protection system	
	xiv.	Industry of power electronics devices	
	XV.	Transmission tower project area	
	xvi.	Any contemporary industry under MSME sector to understand detail of	
		operation and starting of a new venture.	
	xvii.	A large industry to study protection system	
	xviii.	Industry of power electronics devices	
	xix.	Transmission tower project area	

Sr. No.	Activities	Hours
	xx Any contemporary industry under MSME sector to understand detail of	
	operation and starting of a new venture.	
	xxi. Any other technical field area as may be found suitable alternative to	
	above list.	
2	Guest Lecture by professional / industrial expert:	12
	The guest lecture (s) any three of two hours duration each from the field	
	/industry experts, professionals or from experienced faculty members(from own	
	department or other departments) will be encouraged) are to be arranged from	
	the following or alike topics. A brief report to be submitted on the guest lecture	
	by each student as a part of term work.	
	Group A (at least one)	
	i. Career opportunities for diploma engineers	
	ii. ii)Industrial Dispute and Labour Laws	
	iii. Challenges in industrial working environment for diploma engineers	
	iv. Scope for diploma electrical engineers	
	v. Working in shopfloor.	
	vi. Oppurtunities in the service sector	
	vii. Any other topic of relevance as may be deemed fit for fresh engineers	
	viii. as he starts his career in industry.	
	(rour B (at least and)	
	i East viendly sin conditioning / refrigeration	
	i. Ecomentary an conditioning / remigeration.	
	iii Testing of quitchgoor	
	iii. Testilig of switcliged	
	W. Automobile pollution norms of pollution control	
	v. Automobile pollution, norms of pollution control.	
	vi. Natiotechnology	
	viii New trends in newer electronics devices	
	iv TOM	
	x Recent modification in IF rules	
	xi standardization / ISO certification	
	xii Role of micro, small and medium enterprise. In Indian economy	
	xiii Entrepreneurshin development and oppurtunities	
	viv Interview techniques	
	xy Any tonic that could not be covered in earlier semesters and having	
	relevance to technical knowledge gathered in all semesters.	
3	Information search	12
Ū	Information search can be done through manufacturers, catalogue, internet,	
	magazines, books etc and a report need to be submitted. Can be done in a group	
	of 2/3 students	
	Topic suggested (any two)Teachers may assign work on any other cross	
	disciplinary subjects for enrichment of knowledge outside course work of	
	Electrical discipline)	
	1. Blue tooth technology	
	2. Artificial technology	
	3. Data warehousing	
	4. Cryptography	
	5. Digital signal processing	
	6. Bio-informatics	
	7. Magnetic levitation system	
	8. Recent development in electrically operated vehicles for mass transport	
	9. Comparative study of metro railway in Kolkata and Delhi	
	10. Alternative fuel and energy options	
	11. Comparison of transformer companies	
	12. Latest trends in classification of insulating materials	
	13. Design consideration for dry type transformers	
	14. State and national statistics of power generation	

Sr. No.	Activities	Hours
	15. Market survey of contactors, relays and their comparative analysis.	
	16. Market survey of any other electrical product which must include among	
	other things various manufacturers, cost, specification, application areas	
	etc.	
4	Group Discussion	14
	The students should discuss in a group of six to eight students. Each group to	
	perform any TWO group discussions. Topics and time duration of the group	
	discussion to be decided by concerned teacher. Concerned teacher may modulate	
	the discussion so as to make the discussion a fruitful one. At the end of each	
	discussion each group will write a brief report on the topic	
	as discussed in the group discussion.	
	Some of the suggested topics are –	
	i. Scope of outsourcing of electrical Engineering services.	
	ii. ii)Pollution Control	
	iii. Rain water harvesting	
	iv. Trends in energy conservation	
	v. Safety in day to day life	
	vi. Use of plastic carry bag (social & domestic Hazard)	
	vii. vii)Pollution control	
	viii. viii) Any other common topic related to electrical field as directed by	
	concerned teacher.	
5	Seminar / Poster presentation:	14
	Students should select a topic for seminar based on recent development in	
	Electrical Engineering fields, emerging technology etc. Concerned Teachers	
	will guide students in selecting topic.	

EXAMINATION SCHEME (SESSIONAL)

Continuous internal assessment of 50 marks is to be carried out by the teachers throughout the sixth semester. **Distribution of marks: Information search = 10, seminar = 10, Group discussion = 5, field visit = 10, guest lecture attendance and report = 15**

Name of the Course: *DIPLOMA IN ELECTRICAL ENGINEERING (POWER SYSTEM)* Subject : *General Viva Voce*

Subject : General VIVa Voce	
Course Code: EEPS/S6/GVV	Semester: <i>SIXTH</i>
Duration: ONE SEMESTER	Maximum Marks: 100
Teaching Scheme	Examination Scheme
Theory : hrs./week	Mid Semester Exam.: NIL
Tutorial: hrs./week	Attendance, Assignment & interaction: NIL
Practical: hrs./week	End Semester Exam.: NIL
Credit: 2	Practical: 100 Marks

Aim:

SI. No.	
1.	It is required to revisit the contents of the departmental subjects learnt by the students up to
	sixth semester.
2.	As a diploma holder of Electrical Engineering, students should be able to co relate the various
	ideas and concepts learnt from various subjects throughout the course duration.
3.	Student should equip themselves to face various types of technical questions during various
	competitive examinations/ Interview Board.

Contents (Theory)

The syllabi of all the theoretical and sessional subjects taught in the three years of diploma education

EXAMINATION SCHEME (SESSIONAL)

The Final Viva-Voce Examination shall take place at the end of Sixth Semester. It is to be taken by Faculty members of the Institute concerned.